We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.
Notes: 6 FLOP/parameter/token * 3000000000 active parameters * 2000000000000 tokens = 3.6e+22 FLOP
Size Notes: "our AuT (Audio Transformer) encoder, trained from scratch on 20 million hours of supervised audio" "The second phase of pretraining utilizes a large-scale dataset containing approximately 2 trillion tokens, with the following distribution across modalities: text (0.57 trillion), audio (0.77 trillion), image (0.82 trillion), video (0.05 trillion), and video-audio (0.05 trillion)"
Notes: Audio Encoder AuT 650M Vision Encoder SigLIP2-So400M 540M Thinker MoE Transformer 30B-A3B Talker MoE Transformer 3B-A0.3B MTP Dense Transformer 80M Code2wav ConvNet 200M