We introduce LongCat-Flash, a 560-billion-parameter Mixture-of-Experts (MoE) language model designed for both computational efficiency and advanced agentic capabilities. Stemming from the need for scalable efficiency, LongCat-Flash adopts two novel designs: (a) Zero-computation Experts, which enables dynamic computational budget allocation and activates 18.6B-31.3B (27B on average) per token depending on contextual demands, optimizing resource usage. (b) Shortcut-connected MoE, which enlarges the computation-communication overlap window, demonstrating notable gains in inference efficiency and throughput compared to models of a comparable scale. We develop a comprehensive scaling framework for large models that combines hyperparameter transfer, model-growth initialization, a multi-pronged stability suite, and deterministic computation to achieve stable and reproducible training. Notably, leveraging the synergy among scalable architectural design and infrastructure efforts, we complete model training on more than 20 trillion tokens within 30 days, while achieving over 100 tokens per second (TPS) for inference at a cost of $0.70 per million output tokens. To cultivate LongCat-Flash towards agentic intelligence, we conduct a large-scale pre-training on optimized mixtures, followed by targeted mid- and post-training on reasoning, code, and instructions, with further augmentation from synthetic data and tool use tasks. Comprehensive evaluations demonstrate that, as a non-thinking foundation model, LongCat-Flash delivers highly competitive performance among other leading models, with exceptional strengths in agentic tasks. The model checkpoint of LongCat-Flash is open-sourced to foster community research.
Notes: 6 FLOP/parameter/token * 27000000000 active parameters * 23000000000000 tokens ["Likely" confidence, see dataset size notes] = 3.726e+24 FLOP
Size Notes: "(1) We train the model on approximately 20 trillion tokens with 8192 sequence length to establish a robust base model. (2) Reasoning and coding capabilities are further enhanced using trillions of data. (3) The context length is extended to 128k through training on long context corpora." With "Likely" confidence we may assume theytrained on total of 23T tokens
Notes: "560 billion total parameters, featuring an innovative Mixture-of-Experts (MoE) architecture. The model incorporates a dynamic computation mechanism that activates 18.6B∼31.3B parameters (averaging∼27B)"